
Preprin
t

Back to BASIC in Compiler Construction
(short position paper)

Stefan Gruner

Department of Computer Science, University of Pretoria, South Africa
sg@cs.up.ac.za

Abstract. This short-paper offers an experience report about a success-
ful way of giving an introductory compiler construction course to 3rd-
year undergraduate students. Because the in-depth-presentation of com-
piler construction has nowadays become rather seldom at South African
universities, this short-paper is intended to serve as motivation and recipe
for the topic’s (re)introduction at other institutions of tertiary education.

Keywords: Compiler Construction, 3rd-year Undergraduate, basic, Ex-
perience Report, Tertiary Education, Computer Science.

1 Motivation and Related Work

In bygone days there was a sharp distinction between vocational tertiary edu-
cation in ‘technikons’ —which emphasided employability and industry-readiness
for their students— on the one hand, and academic tertiary education at uni-
versities —which emphasised scientificness or scholarliness and which were by-
and-large free from industrial interference— on the other hand. Recent trends in
tertiary education both nationally and internationally have increasingly blurred
the old line of separation between technikons and universities, whereby the (for-
mer) technikons are now striving for higher scholarly reputation (thus competing
against the classical universities); the universities are now increasingly empha-
sising and advertising the employability and industry-readiness of their students
(thus competing against the former technikons); like the curricula of the former
technikons, also the curricula taught at universities are now increasingly influ-
enced by the commercial industry (often via external advisory boards). Under
these circumstances and a consequence of this line-blurring trend, which is well-
documented in large quantities of literature on higher education —for only three
example see [12][13][16]— some universities nowadays might feel tempted to di-
lute (if not entirely abolish) a number of classical courses that are now being
regarded as ‘too theoretical’, ‘not practical enough’, or ‘not industrially rele-
vant’. Whereas the classical university of bygone days confronted its students
with difficult theoretical science from day one onwards, nowadays trend is to
first train students in industrially applicable skills, and to let the science follow
only later at post-graduate level. Indicative of this trend seems to be also the
nowadays mushrooming usage of the phrase “teaching and learning” (instead of



Preprin
t

lecturing and studying) in tertiary education management jargon which seems
to signify an ongoing schoolification of tertiary education at universities.1

The topic of this short position-paper —compiler construction— cannot be
separated from those above-mentioned general trends. In South Africa, for ex-
ample, only few of the country’s tertiary education institutions offer courses on
this topic at all, and also internationally the curricular relevance of compiler con-
struction has been disputed [7][11][22]. However, the difference between learning
programming and studying compiler construction is similar to the difference
between learning how to drive a car and studying automotive engineering for
the sake of car-construction: learning programming and learning to drive a car
are simple enough that teenagers can do that at secondary school before enter-
ing university, whereas science-based tertiary education is necessary to master
the challenges of compiler construction (i.e.: making new programming languages
rather than merely using existing ones) as well as automotive engineering. Beheld
from this perspective it should be clear that computer-scientific topics like com-
piler construction ought not to vanish from tertiary computer science curricula
— though this has appened in fact from place to place. Indeed: if (as mentioned
above) also universities are nowadays becoming increasingly employability-skills-
oriented, and if the local IT industry mainly wants java programmers, then why
bother ‘learning’ compilers at university? Such a point of view, however, would
ignore the educational benefits of compiler construction as computer science in
a nutshell, in which the threads of many sub-topics of computer science (e.g.:
automata theory, algorithms and data structures, principles of software engi-
neering, operating systems, artificial intelligence methods of optimisation, and
the like) are woven together [9]. In the undergraduate curriculum, compiler con-
struction is one of the few theoretically solid topics by means of which the the
scientific-ness of computer science (as opposed to computer engineering or soft-
ware ‘crafting’) can be convincingly demonstrated. However: even the rather
small minority of those students, who are still coming to university with a clas-
sical scientific outlook [10], do not find it easy to imagine a compiler’s theoretical
concepts and inner workings.

In this short-paper report I briefly describe qualitatively what I have done
to provide a fruitful study experience for my compiler construction students un-
der those above-mentioned circumstances. Thereby my pedagogical efforts were
particularly aimed at making the students intuitively see an actually running
program after its compilation — i.e.: to provide the students with some joyful
personal ‘heureka!’ experiences which are arguably important from a pedagogical
point of view. On-the-fly I also tried to emphasise the computer-scientific foun-
dations of compiler construction wherever possible (for example: by pointing out
issues of undecidability on various occasions) with the aim of nurturing a scientific
world-view also among those (many) students who are nowadays at university
just for the above-mentioned employability skills [10]. To those students I tried
to advertise the benefits of a scientific world-view rather instrumentalistically
with the message: “solid science will help you to do a better job”.

1 I still remember my chemistry teacher: “at school you learn; at university you study!”



Preprin
t

Academic literature on compiler education dates back to the mid-1960s. Due
to the wide-spread standardisation of compiler construction, publications on this
topic appear in only irregular frequency and not in large numbers. In “a new
approach to teaching a first course in compiler construction” from 1976 it was
recommended to replace one large semester project by several smaller indepen-
dent mini projects [18]; I have followed that route. An “emulator” approach to
code generation was advocated already in 1977 [15]; I have followed that route
as well. The Student Programming Language SPL used in my course is similar
to the project language of [3]. The (disputed) importance of compiler construc-
tion within the computer science curriculum was emphasised again during the
mid-1990s [2]. The topic-specific difficulties with which compiler construction
students are typically confronted are summarised in [19]: for similar reasons the
students of [4][21] were given a partly pre-fabricated compiler environment to
‘play’ with; this rather shallow educational ‘use and play’ approach, however,
is not advocated by me. The often-repeated opinion about compiler construc-
tion being allegedly ‘out-dated’, ‘too old-fashioned’ or ‘irrelevant’ for nowadays
curricula was analysed and discussed in [11] wherein also some new topics for
advanced compiler construction courses were presented. A similar modernisation
attempt was presented in [22] — albeit with the danger that all those “excit-
ing”[22] software-controlled robots might only distract the students from the
scientific essentials of the topic. In [7] the topic’s relevance question was raised,
too, and yet another tool kit in support of new approaches to compiler construc-
tion was presented. A nice and insightful personal letter on this topic was written
by the main author of the seminal ‘dragon book’ [1]. Whereas the practical part
of my course ends with the generation, optimisation and variable-liveness analy-
sis of intermediate code, whereby the generation of target machine code is merely
lectured, the authors of [14] have created a small and simple set of pseudo ma-
chine code instructions by means of which their students can practice also the
final compiler phase of target code generation. However, similar to my approach
at intermediate code level, the pseudo machine code of [14] is emulated, too.

2 Experience Report

The introductory compiler construction course described in this short-paper is
a 3rd-year course in one academic half-year (semester). Two lectures took place
per week with 50 minutes duration per lecture. Moreover, eight practicals had
to be done and demonstrated. The work-time per practical was approximately
7–10 days. No additional recapitulation- or tutoring-lessons (outside the regular
lectures) were provided to the students, who thus had to be highly self-sufficient,
self-responsible, self-motivated, and diligent. All in all, each student implemented
a fully operational compiler from scanner (lexer) and parser via static semantics
analyser (name-scope analysis, decl-appl analysis, value-flow analysis and type-
checking) to intermediate code generation (translation to basic), followed by
some intermediate code optimisation (on the generated basic code) as well as



Preprin
t

variable liveness analysis and variable dependency analysis (yielding a coloured
dependency graph) also on the generated basic code.

Mogensen’s book [17] provided the conceptual foundations, whereby the stu-
dents had rather little prior knowledge from their previous study-years 1–2 in
theoretical informatics, i.e.: automata theory and formal languages, graph the-
ory, set theory, fixpoint theory, and the like. More advanced sub-topics of com-
piler construction (e.g.: garbage collection, parallelism, automatic type inference,
compilation of object-oriented source languages with classes and sub-classes, op-
erator overloading, dynamic typing, dynamic scoping, and the like) could merely
be mentioned cursorily within the above-mentioned organisational limits of this
introductory course. Nonetheless, to keep in touch with the most recent devel-
opments in the field, also a short overview-essay about obfuscating compilers
(a.k.a. ‘crypto-compilers’) had to be written, whereby I provided the students
with some initial literature references from which they had to start with their
reading-and-writing work. Five working days were allocated to this essay task.

W.r.t. the related work recapitulated above, I introduced a self-made imper-
ative procedural Student’s Programming Language (SPL) the context-free (albeit
initially ambiguous) grammar of which contained merely the following lexical
and syntactic concepts:

– a main program, optionally followed by procedure definitions (sub-routines);
– simple input/output commands;
– named variables with preceding type declarations;
– imperative assignment statements with some simple arithmetic operations

on composite terms;
– conditional statements with composite condition-terms (and optional else);
– unbound iteration statements (while with composite exit condition terms);
– bound iteration statements (for, with non-composite exit conditions and

loop-counter increment +1);
– call statements for the parameter-less sub-routines.

Further details of the grammar need not be provided in this short report, as every
competent computer science lecturer can easily design a similar SPL. In order not
to overwhelm the students with programming work, the SPL sub-routines were
truly old-fashioned without any input parameters and without any return-values.
Proper function calls with input parameters and return values on a runtime stack
were only discussed in the lectures on the basis of the book [17]. Though SPL
sub-routines can contain inner (non-global) variables in separate static-semantic
scopes, their main purpose is the manipulation of global variables by way of side-
effects. Even the nesting of inner sub-procedures (with their own static-semantic
scopes) within procedures was a grammatical possibility.

Following the classical phases of compiler construction, the students first
had to come up with regular expressions (re), then non-deterministic finite au-
tomata (nfa), then deterministic finite automata (dfa), finally minimised finite
automata (mfa) for the vocabulary of SPL. For the above-mentioned pedago-
cical purposes no lexer-generator was allowed to be used; the students had to



Preprin
t

implement their own lexers from their mfa although the availability of lexer-
generators for professional purposes was mentioned in the lectures. In the next
phase of the project, the deliberately ambiguous grammar of SPL had to be made
non-ambiguous, and the students’ own parsers for it had to be demonstrated.
For the sake of in-depth understanding by construction it was again forbidden
to use already available parser generators, the existence of which for professional
purposes was only mentioned in the lectures. Due to the detailed instructions in
the chosen book [17] about how to build a parser, this sub-task of the project
was well done by all students in the course. As usual, the emitted concrete syn-
tax tree also had to be purified to a less dense abstract syntax tree (ast) in an
after-phase of the parse procedure.

More challenging, however, was the implementation of the static semantic
analysis software in the last analytical (front-end) phase of the project. The
large amounts of ast ‘crawling’ with all the inherited and synthetic attributes
needed for the identification of the (nested inner) name-scopes as well as for type-
checking, value-flow-analysis (etc.) turned out to be problematic particularly for
those students who were weak in algorithms and data structures (study-year 2),
because the chosen compiler construction book did not go deeply enough into the
details of these matters; for pedagogical reasons (higher education) the students
had to seek, find, and self-study whatever literature they could need for this
phase. Hence, in several of the software demonstration sessions, types were not
always correctly checked, or name-scopes were not consistently separated from
each other. Especially in this static-semantics phase of the practical projects,
several students have obtained more insight from their mistakes and errors than
from their positive achievements.

After the static-semantic analysis, the generative (back-end) phase of the
project ended with the production (and subsequent optimisation on the basis
of variable liveness and variable dependency analysis) of intermediate code; the
principles of producing hardware-specific target code from hardware-independent
intermediate code were merely lectured along the lines of [17]. This last phase
of the practical project was not too difficult for the students as the algorithmic
generation of intermediate code (from ast and static-semantic information) was
well described in the chosen book.

The ancient programming language basic in its simplest non-modernised
form was chosen as the target language for the students’ intermediate code gen-
erators. In its oldest form, basic is a pure von-Neumann language with its noto-
riously “harmful”[8] goto jumps to symbolic addresses. Thus all the high-level
control structures (if-then-else, while, for) with their composite logical branching
conditions had to be translated by the students’ code generators into cascades
of goto jumps, as it would also have been the case in genuine machine code
(for specific hardware) at the very end of the code generation chain. The au-
tomatically generated basic programs were then further optimised by some of
the not-so-difficult techniques which the chosen book described in sufficient de-
tail (e.g.: common sub-expression elimination, constant propagation, and the
like). Run-time tests with carefully chosen input values were used to quick-check



Preprin
t

whether the students’ implementations of ‘optimisations’ had actually damaged
the operational semantics of the un-optimised basic programs — in several demo
sessions that was indeed the case. After looking at their thus-generated basic
code, many students were astonished about its mind-boggling cascades of goto
jumps. Thus the students also began to appreciate the concern of Dijkstra’s
famous ‘goto harmful’ letter [8] (the reading of which was an additional home-
work task), and began to understand that it is now the compiler’s function to
create those low-level goto jumps which the human programmer is no longer
supposed to write. Because basic emulators are nowadays available on the In-
ternet, the students could use those emulators to see with their own eyes how
their own SPL input programs could be translated (if free of lexical, syntactic
and static-semantic defects) by their own compilers to executable basic code,
and how a subsequent run would proceed step by step in the observable basic
emulators.2 Insofar as the elements of SPL can be easily expressed in familiar
languages like java, for which well-tested compilers are already available, the
students were thus also able to conduct further comparative experiments and ob-
servations by first re-writing an SPL program to java and then seeing whether
the basic behaviour of their compiled SPL program would match the runtime
behaviour of the corresponding java program. If thus, for example, a student’s
scope checker in the static-semantic analysis phase would still contain some un-
detected flaw, then his finally generated basic program could be expected to
reveal in the online-emulator a strangely different runtime behaviour in compar-
ison against the runtime behaviour of the SPL-equivalent java program after its
translation to byte code by a trustworthy java compiler.

All those features provided the students with fruitful study-experiences, and
the pass rate after the course’s final exam was remarkably high. Anecdotal evi-
dence (from students’ various e-mails) seems to indicate that the students have
by-and-large appreciated my educational approach as well as the value of the
knowledge obtained from it. One student remarked explicitly that he now grasps
why I had called compiler construction computer science in a nutshell at the very
beginning of the course.

3 Possible Critique and Outlook to Future Developments

In some internal discussions with several colleagues before I wrote this paper a
number of interesting questions had been asked — for example: why was it not
allowed to use already existing lexer and parser generators? Would the use of
such pre-existing tools not provide the students with the same insight as the te-
dious creation of their own lexers and parsers? Indeed there are some ‘practically
oriented’ books like [20] which do not delve as deeply into the underlying theo-
retical concepts as we did, and I am also aware of at least one university in the
country where the topic is presented in such an overview-oriented style. If, how-
ever, we are willing to accept the epistemological opinion that an engineer can

2 As a minor by-product of this approach, the students also obtained some insight into
the history of programming languages and computing.



Preprin
t

fully grasp only what he can construct, then the students’ own lexers and parsers
(no matter how simplistic) will be of better engineering-educational value than
the mere inspection of the software code of already existing lexer- and parser-
generators. By analogy: it is also not sufficient to inspect a car to become an
automotive engineer. Why was the simple SPL, rather than a modern language
like Python, used as source language? Here my answer is: for the students in the
limited above-mentioned set-up of my course, the problems of type-checking and
code-generation for object-oriented source languages would have been too diffi-
cult. Object-oriented type-checking alone (let alone code-generation) would have
required a theoretical foundation along the lines of [6] which would have been
far outside the scope of our curriculum. As SPL in all its simplicity is already
Turing-complete it sufficed for the implementation of the usual pedagogical ex-
ample programs (like Euclid’s gcd algorithm) from which the students were
able to generate executable target code with reasonable effort. Why was the old
basic, and not a modern language like Python used for target code? My an-
swer is that basic is a proper von-Neumann language, with sybmolic addresses
(line numbers) and goto jumps like in genuine machine code, which is at the
same time observably executable in a number of freely available interpreters and
emulators. Python, with all its high-level features, is no such von-Neumann lan-
guage and is thus far away from resembling machine code in any form. With
the available basic interpreters the students were able to empirically observe
the runs of their self-translated SPL programs in the basic interpreter line by
line. For all the above-mentioned reasons I hope that this short experience re-
port can serve both as a motivation and as a recipe for the (re)introduction
of compiler construction at other institutions of higher education anywhere in
the world. With the recent growth in new high-level special-purpose-languages
(like specification- or modelling languages for software engineers), or the re-
cent emergence of crypo-computers for which code-obfuscating compilers (a.k.a.
crypto-compilers) are needed, the topic of compiler construction might soon get
rid of its (prejudiced) smell of oldfashioned-ness and might come back into the
centre even of IT-commercial interests.

Acknowledgements. Thanks to my students who provided comments on the
educational quality of my compiler construction course. Thanks to B. Watson,
D. Watson [20], as well as T. Mogensen [17] for interesting conversations on this
topic. Thanks also to P. Breuer for his valuable hints to the growing research on
crypto-compilers [5]. Last but not least thanks to the anonymous reviewers of
SACLA‘2019 for their critical and helpful comments on the draft of this short-
paper prior to its publication.

References

1. Aho, A.V.: Teaching the Compilers Course. ACM SIGCSE Bull. 40(4), 6-8 (2008)

2. Aiken, A.: Cool: a Portable Project for Teaching Compiler Construction. ACM
SIGPLAN Not. 31(7), 19-24 (1996)



Preprin
t

3. Appelbe, B.: Teaching Compiler Development. In: Proc. SIGCSE’79 10th ACM
SIGCSE Techn. Symp. on Comp. Sc. Educ., pp. 23-27 (1979)

4. Baldwin, D.: A Compiler for Teaching about Compilers. In: Proc. SIGCSE’03 34th
ACM SIGCSE Techn. Symp. on Comp. Sc. Educ., pp. 220-223 (2003)

5. Breuer, P.T.: Compiled Obfuscation for Data Structures in Encrypted Computing,
arXiv:1902.06146; Compiling for Encrypted Computing: Obfuscation but Not in
Name, arXiv:1902.06146, (2019)

6. Bruce, K.B.: Foundations of Object-Oriented Languages: Types and Semantics.
MIT Press (2002)

7. Demaille, A., Levillain, R., Perrot, B.: A Set of Tools to Teach Compiler Construc-
tion. In: Proc. ITiCSE’08 13th Ann. ACM Conf. on Innov. and Techn. in Comp.
Sc. Educ., pp. 68-72 (2008)

8. Dijkstra, E.W.: Go To Statement Considered Harmful. Comm. ACM 11(3), 147-
148 (1968)

9. Griswold, W.G.: Teaching Software Engineering in a Compiler Project Course. J.
Educ. Resour. Comput. 2(4), paper #3 (2002)

10. Gruner, S.: On the Future of Computer Science in South Africa: A Survey amongst
Students at University. In: Proc. SACLA‘15 44th Ann. Conf. of the Southern Afric.
Comp. Lect. Assoc., pp. 215-219, (2015)

11. Henry, T.R.: Teaching Compiler Construction using a Domain Specific Language.
In: Proc. SIGCSE’05 36th ACM SIGCSE Techn. Symp. on Comp. Sc. Educ., pp.
7-11 (2005)

12. Kruss, G., Visser, M.: Putting University-Industry Interaction into Perspective: A
Differentiated Vew from Inside South African Universities. Journ. Technol. Transf.
42(4), 884-908 (2017)

13. Maharasoa, M., Hay, D.: Higher Education and Graduate Employment in South
Africa. Quality in Higher Educ. 7(2), 139-147 (2001)

14. Mahoney, W., Pedersen, J.: Teaching Compiler Code Generation: Simpler is Better.
ACM SIGCSE Bull. 41(4), 30-34 (2010)

15. Martin, D.: An Emulator used to Teach Compiler Design. In: Proc. 15th Ann.
ACM Southeast Regional Conf., pp. 1-10 (1977)

16. McKenna, S., Powell, P.: ‘Only a Name Change’: The Move from Technikon to
University of Technology. Journ. Indep. Teaching and Learn. 4(1), 37-48 (2009)

17. Mogensen, T.Æ: Introduction to Compiler Design. 2nd ed., Springer (2017)
18. Shapiro, H.D., Mickunas, M.D.: A New Approach to Teaching a First Course

in Compiler Construction. In: Proc. SIGCSE’76 ACM SIGCSE-SIGCUE Techn.
Symp. on Comp. Sc. Educ., pp. 158-166 (1976)

19. Vegdahl, R.: Using Visualization Tools to Teach Compiler Design. In: Proc.
CCSC’00 14th Ann. Consortium on Small Colleges Southeastern Conf., pp. 72-
83, Consortium for Comp. Sc. in Colleges (2000)

20. Watson, D.: A Practical Approach to Compiler Construction. Springer (2017)
21. White, E., Sen, R., Stewart, N.: Hide and Show: Using Real Compiler Code for

Teaching. In: Proc. SIGCSE’05 36th ACM SIGCSE Techn. Symp. on Comp. Sc.
Educ., pp. 12-16 (2005)

22. Xu, L., Martin, F.G.: Chirp on Crickets: Teaching Compilers using an Embed-
ded Robot Controller. In: Proc. SIGCSE’06 37th ACM SIGCSE Techn. Symp. on
Comp. Sc. Educ., pp. 82-86 (2006)




